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Motivation: NRQCD/HQET

How to construct an effective theory for a heavy, non-relativistic particle.

Example: NRQCD/NRQED, HQET [Caswell, Lepage ’85]

Describe particle with mass M and four-velocity vµ by field ψv :

/vψv = ψv

(= assume small k in pµ = Mvµ + kµ)

Write down all operators (to order 1/Mn) compatible with
symmetries: gauge symmetry, C, P, ...

→ Can use field redefinitions to get rid of ∂t ’s, except for 1st order
kinetic term (“canonical form”).
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NRQCD/HQET: Lagrangian

Also, remove mass term by ψv → e iMv·xψv .

In the particle’s rest frame, v = (1, 0, 0, 0)

L = ψ̄

{
iD0 + c2

D2

2M
+ cF g

σ · B
2M

+ cD g
[D · E]

8M2
+ icS g

σ · (D× E− E×D)

8M2
+ . . .

}
ψ

(Note: This is only rotationally invariant, not Lorentz invariant!)

In an arbitrary frame, fixed v = (v0, ~v)

Lv =

ψ̄v

{
i(v ·D)− c2

D2
⊥

2M
− cF g

σαβG
αβ

4M
− cD g

vα
[
Dβ
⊥Gαβ

]
8M2

+ icS g
vλσαβ

{
Dα
⊥,G

λβ
}

8M2
+ . . .

}
ψv

where Dµ
⊥ = Dµ − vµ(v · D)

Coefficients ci can be obtained by matching to full QCD calculations
(perturbatively or lattice QCD).
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Reparametrization Invariance

Computations of ci ’s require quite some effort/time/...
Can we simplify somehow further? Are these coefficients related?

The decomposition of the momentum pµ is not unique

pµ = Mvµ + kµ

⇒ Get the same pµ for

(v , k)→ (v + q/M, k − q) with v2 = (v + q/M)2 = 1

Reparametrization Invariance (RPI)

The Lagrangian must be invariant under v → v + q/M
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Reparametrization Invariance II

How do the fields transform under RPI?

For our effective fields: ψv ∼ e iMv ·xψ

→ Fields pick up a phase e iq·x under RPI.

However, non-scalar fields also have spinor/vector-indices.

General RPI for particle with spin s [Luke,Manohar ’92]

Φv → e iq·x Λ(û, v + q/M)−1Λ(û, v)︸ ︷︷ ︸
=:X (D)

Φv

→ Λ(w , v) such that w = Λ(w , v)v and u = (v + iD/M) and û = u
|u| .

For s = 1/2

X (D) = 1 +
/q

2M
+

σαβq
αDβ
⊥

2M(M|u|+ M + i(v · D))
= 1 +

/q

2M
+
σαβq

αDβ
⊥

4M2
+ . . .
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RPI - Relations

Consequences for the Lagrangian

Lv = ψ̄v

{
iD ·v −c2

D2
⊥

2M
−cF g

σαβG
αβ

4M
+ icS g

vλσαβ
{
Dα
⊥,G

λβ
}

8M2
+ . . .

}
ψv

We demand invariance under

v → v + q/M

ψv → e iq·x

[
1 +

/q

2M
+
σαβq

αDβ
⊥

4M2
+ . . .

]
ψv

⇒ The coefficients must obey

RPI - Relations

c2 = 1

cS = 2cF − 1
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The origin of RPI

How does one get the X (D)-part of the RPI-transformation?

”In fact, we have not been able to follow the arguments (...)
regarding the derivation of the reparameterization trans-
formation step by step. To which extent this is due to our
own inabilities, and to which extent the arguments are
actually inconclusive or wrong, is not completely clear to
us at each point, either.Therefore we decided to investigate
the issue on our own along somewhat different lines.”

[Finkemeier, Georgi, McIrvin ’97]
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The origin of RPI - II

There are strong “hints” as to the origin of RPI:

QCD is Poincaré invariant with generators

h = i∂t ,

p = −i∂ ,
j = r × p + Σ ,

k = rh − tp + iΣ ,

Poincaré commutation relations (PCR)

[h,pi ] = [h, ji ] = 0 [pi ,pj ] = 0

[ji , jj ] = iεijk jk [J i ,pj ] = iεijkpk

[h, kj ] = −ipj [pi , kj ] = −iδijh
[ji ,K j ] = iεijkkk [ki , kj ] = −iεijk jk

⇒ The conserved charges in NRQCD should also obeys these PCRs.
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The origin of RPI - III

Calculate conserved charges [Brambilla, Gromes, Vairo ’03]

H =

∫
d3x ψ†

(
m − c2

D2

2m
− cF g

σ · B
2m

− cD g
[D·,Π]

8m2
− icS g

σ · [D×,Π]

8m2
+ . . .

)
ψ

P =

∫
d3x

(
ψ† (−iD)ψ +

1

2
[Πa×,Ba]

)
,

J =

∫
d3x

(
ψ†
(

x× (−iD) +
σ

2

)
ψ +

1

2
x× [Πa×,Ba]

)
,

K = −t P +

∫
d3x
{x, h}

2
− k(1)

∫
d3x

(
1

2m
ψ†
σ

2
× (−iD)ψ

)
,

(k(1) is a coefficient to be determined.)

+ Quantize canonically:
[Π(x, t),A(y, t)] = iδ(3)(x− y) , {ψα(x, t), ψ†β(y, t)} = δαβδ

(3)(x− y), . . .

+ Enforce Poincaré algebra:

Relations for coefficients ∼ RPI relations

k(1) = 1, and c2 = 1, cS = 2cF − 1, ...
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RPI ∼ Lorentz ?

Conjecture (Theorem?)

RPI is enforcing Lorentz invariance of the Lagrangian

⇒ Let’s forget about NRQCD and RPI for a moment and start from
scratch

How can we make a non-relativistic EFT Lorentz invariant?
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Wigner’s little group in QM

How do QM states transform under Lorentz transformation?

States are characterized by the value of p2 = M2 and the sign of p0.

Pick a reference vector kµ, e.g. kµ = (M, 0, 0, 0), and a standard
Lorentz transformation L(p), s.t. L(p)k = p for any such p.

Define the one particle states

|p,m〉 ∼ L(p) |k ,m〉

Under a Lorentz transformation

|p,m〉 → Λ |p,m〉 ∼ L(Λp) ∗ L(Λp)−1 ∗ Λ ∗ L(p)︸ ︷︷ ︸
=:W (Λ,p)

|k ,m〉

W (Λ, p) ∈ Wigner’s little group ⊂ Lorentz: W (Λ, p)k = k .

⇒W (Λ, p) |k ,m〉 =
∑
m′

Dm′m[W (Λ, p)]
∣∣k,m′〉
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Wigner’s little group in QM - II

|p,m〉 → Λ |p,m〉 ∼
∑
m′

Dm′m[W (Λ, p)] L(Λp)
∣∣k ,m′〉

The coefficients Dm′m[W (Λ, p)] form a unitary representation of the
little group.

⇒ The little group determines the unitary rep’s of the Lorentz group.

Unitary Representations of the Lorentz group [Wigner ’39]

(Infinite dim.) Unitary representations of the Lorentz group are given by

U(Λ) |p,m〉 ∼ D[W (Λ, p)] |Λp,m〉

where D is a rep. of the little group element W (Λ, p) = L(Λp)−1 Λ L(p).

What is the structure of the little group?
→ For a massive particle choose for example k = (M, 0, 0, 0)

→ little group is SO(3)
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W (Λ, p) for a massive particle

Let’s compute W (Λ, p) for k = Mv and L(p) = exp[−iθJαβ pα

M vβ].

1 For elements of the Little group, i.e. “rotations” with Rv = v ,

W (R, p) = R

This will simplify things a lot!

2 The remaining Lorentz transformations are “boosts” with
Bv = v − q/M, for infinitesimal q with q · v = 0,

W (B, p) = 1− i

2

[
qαpβ⊥ − pα⊥q

β

M(M + v · p)

]
Jαβ +O(q2)

with pα⊥ = pα − (v · p)vα.
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Wigner’s little group in field theories

Let’s apply this to field theories

Demand invariance under

φa(x)→ D[W (Λ, i∂)]abφb(Λ−1x)

1 For rotations with Rv = v

W (R, i∂) = R

No dependence on ∂.

2 For infinitesimal boosts with Bv = v − q/M

W (B, i∂) = 1− i

2

[
qαi∂β⊥ − i∂α⊥q

β

M(M + v · i∂)

]
Jαβ +O(q2).
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What about Lorentz invariance?

For Simplicity, choose v = (1, 0, 0, 0). The corresponding generators are

Rotations

j = r × i∂ + Σ

Boosts

k = ri∂t − ti∂ +
Σ× i∂

M +
√
M2 − ∂2

With h = i∂t and p = −i∂ these satisfy the PCR on fields which obey

i∂tφ =
√
M2 − ∂2φ .

⇒ Theory seems to be Lorentz invariant.

BUT: Appearance of ∂ in spin part of k violates gauge invariance!

⇒ Consolation: At least the free theory is Lorentz invariant :)
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Lorentz invariance of the interacting theory

Appearance of ∂ in W (B, i∂) (= spin part of k) violates gauge invariance.

Obvious fix: Replace ∂ by covariant D = ∂ − igA.

⇒ W (Λ, iD)φv transforms covariantly under gauge transformations.

This spoils PCRs: Does this still describe a Lorentz invariant theory?

→ The answer is YES.

Let’s prove it by showing

1 The charges in the interacting theory obey the Poincaré algebra.

2 One obtains a Lorentz invariant S matrix.

S = limT→∞Ω(T )†Ω(−T ) with Ω(T ) = e iHT e−iH0T

Johannes Heinonen (EFI/UChicago) Lorentz Invariance in EFTs 09/20/12 17 / 37



Lorentz invariance of the interacting theory - II

Condition for a Lorentz invariant theory

Lorentz invariance of the S matrix ⇔ S commutes with H0,P0, J0 and K0.

Note, the free charges H0,P0, J0,K0 obey the PCR, since the
generators h0,p0, j0,h0 do.

The charges in the interacting theory are (H,P, J,K):

H = H0 + V , while P = P0 and J = J0

⇒ Thus [Ki ,Pj ] = −iδijH implies K 6= K0!

How do we find the right form of the generator k?
I claim we already did.

Lorentz invariance of L

Demand invariance under rotations & φv (x)→W (B, iD)φv (x ′ = B−1x)

→ Now prove the Lorentz invariance of the S matrix.
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Lorentz invariance of the S matrix

Follow the standard proof of Lorentz invariance for the S matrix
[e.g. Weinberg Vol. I]

Need to show two things

1 [P0,V ] = [J0,V ] = 0

2 [Ki ,H] = −iPi , with “smooth” ∆K = K−K0.

Then

All free Lorentz charges commute with the S matrix

⇒ S matrix is Lorentz invariant.

In addition, charges in the interacting theory are similarity transforms
of the free ones, e.g. KΩ = ΩK0 with ΩΦ0 = Φint.

⇒ (H,P, J,K) obey the Poincaré algebra.
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Lorentz invariance of the S matrix - II

to 1) [P0,V ] = 0 : X
[J0,V ] = 0 : true since Rv = v : X

to 2) k is of the form

k = ri∂t − ti∂ +
Σ× iD

M +
√

M2 −D2
+O(g)∗

Thus the conserved charge has the form

K = −tP + (...)

with no explicit time dependence in the dots.
⇒ In the Heisenberg picture this then yields

0 = d
dt K = ∂

∂t K + i [H,K] = −P + i [H,K]

hence [H,K i ] = −iP i . X
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Lorentz invariance of effective theories

Lorentz invariance

Our procedure using Wigner’s little group yields a Lagrangian with a
Lorentz invariant S matrix!
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Field strength dependent terms

Boost transformation (includes an ordering prescription)

W (B, iD) = 1− i

2

[
qαiDβ

⊥ − iDα
⊥q

β

M(M + v · iD)

]
Jαβ +O(g)∗

∗ What about the field strength dependent terms?

→ They do not change the free case limit.

→ They do not alter the proof of Lorentz invariance.

⇒ We are free to add such terms if needed:

Allow us to perform field redefinitions containing g (i.e. also Gµν).
Needed to maintain canonical form of the Lagrangian (i.e. only one ∂t).
Will be needed later in the invariant operator method.
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How to build a Lorentz invariant theory

For a general theory

L ∼ φ̄v
{
. . . vµ . . .Dµ . . . γµ . . . εµναβ . . .

}
φv

1 For generalized rotations W (R, i∂) = R

φv (x)→ Rφv (x ′)

∂µ → Rµν∂′ν and Aµ(x)→ RµνAν(x ′)

→ L is invariant, since Rv = v and γµ = R 1
2

(Rµνγν)R−1
1
2

.

2 For boosts with Bv = v − q/M +O(q2)

φv (x)→W (B, iD)φv (x ′)

∂µ → Bµν∂′ν and Aµ(x)→ BµνAν(x ′)

→ Demand invariance of L under this.
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Connection of Lorentz invariance to RPI

We can rewrite the transformation law under boosts: Invariance under

φv (x)→W (B, iD)φv (x ′), ∂µ → Bµν∂′ν and Aµ(x)→ BµνAν(x ′)

is equivalent to invariance under (just using BB−1 = 1)

Lorentz invariance = RPI

φv (x)→ B−1W (B, iD)φv (x), and v → w := B−1v = v + q/M

For a spin 1/2 spinor we obtain:

B−1W (B, iD) =

{
1 +

/q

2M

}[
1 +

σαβq
αDβ
⊥

2M(M + i(v · D))

]

Together with Φv → e iMv ·xΦv , one obtains the RPI transformation.

However, we are not changing v !
We just note an mathematical equivalence.

Johannes Heinonen (EFI/UChicago) Lorentz Invariance in EFTs 09/20/12 24 / 37



Obtaining coefficient constraints

Can implement Lorentz invariance on the field level, and obtain the
same relations between coefficients as before, e.g. at order 1/M3:

δL3 = ψ†
[
e

8
cD [Dt , q · E] +

e

8
(cF − cD + 2cM) q · [∂ × B] +

i

4
(c2 − c4) {q ·D,D2}

+
ie

8
cS{Dt ,σ × q · E}+

ie

8
(c2 + 2cF − cS − 2cW 1 + 2cW 2) {q ·D,σ · B}

+
ie

8

(
−c2 + cF − cp′p

)
{σ ·D, q · B}+

ie

8

(
−cF + cS − cp′p

)
q · σ(D · B + B ·D)

]
ψ .

+ Lower order relations: c2 = 1, cS = 2cF − 1

+ field redefinition to change W (B, iD) :

ψ(x)→e−iq·x
{

1 +
iq ·D
2M2

−
σ × q ·D

4M2
+

icD

8M3
eq · E +

cS

8M3
eq · σ × E + . . .

}
ψ(B−1x)

⇒ We get a vanishing variation iff
c4 = 1, 2cM = cD − cF , cW 2 = cW 1 − 1, cp′p = cF − 1

→ Does this work to any order, i.e. is there an invariant Lagrangian to all
orders in 1/M?
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Invariant operator method

We started with a Lagrangian, which was not Lorentz invariant.
(Only rotationally invariant before enforcing coefficient relations.)

→ Is there an inherently Lorentz invariant construction?

We can answer both questions by the same construction:
Learn from RPI

Find a redefinition Γ(v , iD)

Φv := Γ(v , iD)φv Λ−−→ Φv

Under a Lorentz transformation (in “RPI version”)

Φv := Γ(v , iD)φv → Γ(Λ−1v , iD)Λ−1W (Λ, iD)φv
!

= Γ(v , iD)φv
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Invariant operator method - II

Assume we had an operator Γ(v , iD) that obeyed

Γ(Λ−1v , iD)Λ−1W (Λ, iD) = Γ(v , iD) .

then the field Φv := Γ(v , iD)φv is invariant under Lorentz.
After φv → e iMvxφv this becomes (need only consider B)

Invariance Equation

Γ(v + q/M, iD − q)B−1W (B, iD + Mv) = Γ(v , iD) .

and under Lorentz boosts:

Φv → e iq·xΦv :

⇒ Build invariants using γµ and Vµ = vµ + iDµ/M
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Solving the invariance equation - free case

Invariance Equation

Γ(v + q/M, iD − q)B−1W (B, iD + Mv)︸ ︷︷ ︸
:=X (v ,iD)

= Γ(v , iD) .

Note that in the free case we can write (with Vµfree ≡ vµ + i∂µ/M)

X (v , i∂) = Λ 1
2
(V̂free, v + q/M)−1 ∗ Λ 1

2
(V̂free, v)

= 1 +
/q

2M
+

1

4M2
σµν⊥ qµ∂ν

[
1− iv · ∂

M

]
+ ...

Comparing to the invariance equation one can see:

Closed, all-order solution

Γ(v , i∂) = Λ 1
2
(V̂free, v) = 1 +

i /∂⊥
2M

+
1

M2

[
−1

8
(i∂⊥)2 − 1

2
i /∂⊥iv · ∂

]
+ ...
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Solution to the invariance equation - interacting case

Why not proceed as before? Just replace ∂ → D

RPI - invariant operator method

Γnaive(v , iD) = 1 +
i /D⊥
2M

+
1

M2

[
−

1

8
(iD⊥)2 −

1

2
i /D⊥iv · D

]
+

1

M3

[
1

4
(iD⊥)2iv · D +

i /D⊥
2

(
−

3

8
(iD⊥)2 + (iv · D)2

)]
+O(1/M4)

→ Unfortunately, the interacting case is more complicated!

Γnaive(v , iD) is NOT a solution to the invariance equation starting at
order 1/M3.

⇒ The “RPI invariant operator method” starts to fail to build a Lorentz
invariant Lagrangian at order 1/M4!

One needs to solve the invariance equation explicitly
(pedestrian way or systematically oder-by-order)
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Solution to the invariance equation - interacting case II

Invariance Equation

Γ(v + q/M, iD − q)X (v , iD) = Γ(v , iD) .

The systematic solution shows, that we may choose

X (v , iD) = 1 +
/q

2M
+

1

4M2
σ⊥µνq

µDν
⊥

(
1 − iv · D

M

)
+ . . .

Expanding Γ in powers of 1/M

Γ = 1 +
1

M
Γ(1) +

1

M2
Γ(2) +

1

M3
Γ(3) + . . . ,

Find the solution order by order (remove terms by field redef.)

Γ(1) =
1

2
i /D⊥ , Γ(2) = −

1

8
(iD⊥)2 −

1

2
i /D⊥iv · D

Γ(3) =
1

4
(iD⊥)2iv · D +

i /D⊥
2

[
−

3

8
(iD⊥)2 + (iv · D)2

]
−

g

8
Gµνv

µDν
⊥ −

g

16
σµν
⊥ Gµν i /D⊥

→ Last two terms are essential in solving the invariance equation
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Relations for the coefficients

Since methods differ at 1/M3 in Γ(v , iD), the relations for the
coefficients in the Lagrangian at order 1/M4 are different.
E.g. NRQED at order 1/M4 [Hill, Lee, Paz, Solon (in progress)]

L ∼ ψ†
{
iDt + cF e

σ · B
2M

+ cDe
[∂ · E]

8M2
− cA2e

2 E2

16M3
+ icX4e

2 {Di , [E× B]i}
32M4

+ . . .

}
ψ .

Enforce Lorentz (field transformations or invariant operator method)

correct

cX4 = 4c2
F + 4cD − 2cA2 − 1− 4cF

Using the incorrect RPI invariant operator method

wrong

cX4 = 4c2
F + 4cD − 2cA2 − 1− 6cF

Could also be checked using the method of Brambilla et al.
(if you are masochistic or want to torture your student)

Johannes Heinonen (EFI/UChicago) Lorentz Invariance in EFTs 09/20/12 31 / 37



Generalizations

Examples all shown for spin 1/2, but method is much more general.

Can be easily extended to any spin

→ e.g. spin 3/2 ψµv with invariant constraints /vψµv = ψµv and γµψ
µ
v = 0.

or self-conjugate fields

→ e.g. a Majorana spinor ψM = ψc
M = Cψ∗M , for an operator ψ̄MO(v)ψM :

O(v) = CO(−v)∗C†

Less trivial generalization: Other types of little groups, e.g. for
massless particles.
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For massless particles

Soft-Collinear-Effective theory (SCET)

Build an effective Lagrangian for massless quarks, separating hard,
soft and collinear/anti-collinear degrees of freedom.

⇒ There are two fixed light-like vectors in the Lagrangian:

Collinear: n = (1,~n)
Anti-collinear n̄ = (1,−~n)

The Little Group for a null vector n

E2 = Translations and rotations in 2d

→ Every W can be brought into the form W = S(α, β)R(θ)

S(α, β) must act trivially on physical states: S(α, β)Φk = Φk

U(Λ)Φk ∼ e iθ(Λ,n)ΦΛk
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For massless particles: SCET

Calculate W (Λ, p) = L(Λp)−1 Λ L(p) for:
1 [n→ n, n̄→ n̄] Rotation: 1 dof,
2 [n→ n, n̄→ n̄ + s⊥] Parabolic LT: 2 dof,
3 [n→ n + t⊥, n̄→ n̄] Parabolic LT: 2 dof,
4 [n→ (1 + η)n, n̄→ (1− η)n̄] Boost: 1 dof.

Decompose W = S(αΛ,k , βΛ,k)R(θΛ,k)

→ S(αΛ,k , βΛ,k) gives a constraint, R(θΛ,k) the transformation.

1 Invariant W = Λ = R(θΛ,k)

2 Non-trivial W = S(αΛ,k , βΛ,k)R(θΛ,k)

3 Trivial W ≡ 1

4 Trivial W ≡ 1
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For massless particles: SCET - II

In the non-trivial case, one obtains the constraints

Scalar φ: -
Spinor ξα: /nξ = 0⇔ /n/̄nξ = ξ
Vector Aµ: Does not exist/reduces to scalar!

As it must, ∃ only gauge theories for vectors!
Tµν : Decomposes into a scalar T = Tµ

µ and Fµν = ∂µAν − ∂νAµ.
...

The corresponding transformation for ξ is

ξ →
(

1 +
1

2
/s⊥

1

n̄ · D
/D⊥

)
ξ

This agrees which the one previously obtained from RPI in SCET.
[Manohar, Mehen, Pirjol, Stewart ’02]
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Recap: How to get a Lorentz invariant effective Lagrangian

To build a Lorentz invariant, effective theory for a heavy particle

Identify degrees of freedom, e.g. /vQv = Qv .

Determine the Little Group for vµ and find an L(p).

then

1.) Constructive method

Write down a Lagrangian that looks formally Lorentz invariant, only
constrained by gauge symmetries, C, P, ...

Make Lagrangian invariant under W (Λ, p), where pµ = iDµ.

or

2.) Invariant operator method

Solve the invariant equation for Γ(v , iD) (and W (B, p))

Use γµ and Vµ = vµ + iDµ/M to build invariant Lagrangian
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Conclusion

Wigner’s little group allows the construction of Lorentz invariant
EFTs by transformations on the field level.

It clears up the connection between Lorentz and RPI.
→ Shows failure of the “RPI - invariant operator method” at 1/M4

Method can easily be generalized to any spin, self-conjugate fields,
massless fields, (space-like case?)...
→ Applications to dark matter EFTs, atomic bound states, ...

We never refered to QCD directly as a UV completion
→ No need for a UV theory, e.g. effective theory for protons.
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Thanks for your attention
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Solving the invariant equation

Γ(v + q/M, iD − q)B−1W (B, iD + Mv) = Γ(v , iD)

Expand everything in orders of M

X ≡ B−1W = 1 + qµXµ = 1 + qµ
[

1

M
X (1)
µ +

1

M2
X (2)
µ + . . .

]
,

Γ = 1 +
1

M
Γ(1) +

1

M2
Γ(2) + . . . .

In Γ, find term linear in q

Γ(v + q/M, iD − q)− Γ(v , iD) = qµ
(
− ∂

∂iDµ
Γ +

1

M

∂

∂vµ
Γ

)
+ . . .

Need to solve

∂

∂iDµ
Γ(n) =

∂

∂vµ
Γ(n−1) + Γ(n−1)X (1)

µ + Γ(n−2)X (2)
µ + · · ·+ Γ(0)X (n)

µ ≡ Y (n)
µ

Looks like ∇φ = E in electrodynamics.
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Solving the invariant equation - II

Solution for Γ(n)

Γ(n) = iDµ
⊥Y

(n)
µ − 1

2!
iDµ
⊥iD

ν
⊥

∂

∂iDµ
Y (n)
ν + . . .

In EM: Need ∇× E = 0 to solve ∇φ = E.
Here:

Contraint for Y (n)

∂

∂iD [ν
Y

(n)
µ] = 0

Let’s solve the constraint for Y (n).
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Solving the invariant equation - III

Plug in definition of Y and solution for lower order Γ’s

⇒ X = B−1W must obey a contraint.

Contraint for X (n)

∂

∂iD [ν
X

(n)
µ] = − ∂

∂v [µ
X

(n−1)
ν] + X

(n−1)
[µ X

(1)
ν] + X

(n−2)
[µ X

(2)
ν] + · · · + X

(1)
[µ X

(n−1)
ν] ≡ Z (n)

µν .

Again EM: This looks like ∇× A = B.

→ B needs to obey ∇ · B = 0.

Contraint for Z (n)

0 = vσε
µνρσ ∂

∂iDρ
Z (n)
µν
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Solving the invariant equation - IV

Can show that constraint for Z (n) is obeyed by induction,i.e. if we
have X (1), . . . ,X (n−1) obeying all constraints, then so does Z (n).

⇒ We can “solve” for X (n), but what does that mean?

Before: we can add terms to X = B−1W that vanish in the free case.

→ Constraint for X (n): we must add some such terms to solve for Γ.

Solution for X (n)

X (n)
µ = X̂ (n)

µ + 2
n−1∑
m=1

(−1)m

(m + 1)!
iDν1
⊥ · · · iDνm

⊥
∂

∂iDν1
· · · ∂

∂iDνm−1

(
Z (n)
νmµ − Ẑ (n)

νmµ

)
where X̂ (n) = naive covariantization of given X (i∂), and Ẑ
corresponding to it.

Now use this to solve for Y and Γ
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Solving the invariant equation - V

Since Z (n) has mass dimension n − 2, the first field strength
dependent terms can appear at n = 4.

⇒ We find

X (1)
µ =

γ⊥µ
2

= X̂ (1)
µ

X (2)
µ =

1

4
σ⊥µνD

ν = X̂ (2)
µ

X (3)
µ = −1

4
σ⊥µνD

ν iv · D = X̂ (3)
µ ,

X (4)
µ = σ⊥µνD

ν

[
1

4
(iv · D)2 − 1

16
(iD⊥)2

]
︸ ︷︷ ︸

=X̂
(4)
µ

+
g

32
iDν
⊥

(
−iG⊥µν + σ⊥µσG

⊥σ
ν − σ⊥νσG

⊥σ
µ

)

⇒ Find extra terms, whichh are needed to obtain the correct Γ(v , iD).
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